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Background

Computational Methods for Fluid Flow
Need to efficiently compute steady flow states to
enable
! Implicit time stepping strategies
! Improved stability analysis
! Classification of flow bifurcations

Fluid Models

Incompressible Navier Stokes

∂"u
∂t − ν∇2"u + ("u · ∇)"u +∇p = f in Ω,

∇ · "u = 0 in Ω.

Advection-Diffusion

−∇2u + ("w · ∇)u = g
Viscous and Inertial forces occur on disparate
scales lead to sharp flow features which:
! require fine numerical grid resolution
! cause poorly conditioned non-symmetric system.

Spatial Discretization

Spectral Element Method
On each element, the solution is expressed via a
nodal basis

uNe (x , y) =
N+1∑

i=1

N+1∑

j=1
uijπi(x)πj(y). (1)

Figure: Simulation domain Ω (left) is divided into elements
(middle). In each element grid points based on
Gauss-Legendre-Lobatto nodes are chosen (right).

Spectral Basis Functions

Figure: 4th Order 2D Lagrangian nodal basis functions πi ⊗ πj
based on the Gauss-Labotto-Legendre points.

Fluid Simulation Layout

Time step (BE) xn+1 = xn + ∆tF (tn+1, xn+1)

Nonlinear Solver (Newton) xk+1 = xk + ∆xk
Linear Solver (GMRES) A∆xk = b

Preconditioner (DD) AP−1P∆xk = b

Domain Decomposition System
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P̄S =
∑E
e=1(P̄eΓΓ − P̄eΓI P̄

e
II
−1 P̄eIΓ) represents the

Schur complement of the system. The interface uΓ
is obtained via an iterative solve.

Constant Wind Approximation

When the “wind” "w is
constant on each element,
then element interiors can
be obtained via Fast
Diagonalization and
P−1 = A−1.

Otherwise using a
constant wind
approximation on each
element P−1 ≈ A−1.

Figure: Illustration of a constant
wind approximation

P̄e−1 = M̃(Vy ⊗Vx)(Λy ⊗ I + I⊗Λx)−1(V−1y ⊗V−1x )M̃

Test Case: Constant Wind, Pc=400

"w = (0,200)

Figure: Steady flow with constant wind exhibiting boundary
layer at y = 1 using SEM N=16 & E=4x4.

Interface Solver Convergence

Table: Iteration count (E=4× 4)
Iterations Iterations

N - R-R
4 240 44
8 108 42
16 103 43

Table: Iteration count (N=4)
Iterations Iterations

E - R-R
4× 4 240 44
8× 8 175 42

16× 16 143 50

Robin-Robin preconditioned interface solve (R-R) is
invariant to the number of points in the
discretization and convergences in significantly
fewer steps than the non-preconditioned system (-).

Test Case: Recirculating Wind, Pc=400

"w = 200(y(1− x2),−x(1− y2))

Figure: Computed solution of
steady flow with recirculating
wind using SEM N=4 &
E=12x12.

Figure: Comparison of Outer
iterations when inner iterations
are varied.

Convergence Properties for Refined Meshes

Table: Iteration Count (E=4× 4)
Number of

N Outer Iterations
5 52
7 56
9 55
11 53
13 51

Table: Iteration count (N=4)
Number of

E Outer Iterations
10× 10 37
11× 11 38
12× 12 38
13× 13 38

Summary & Future Directions

Summary
! Improved simulation efficiency for steady
Advection-Diffusion equation

Future Directions
! Improve wind approximation on each element
! Coarse Grid Preconditioner to allow for more
elements

! Use Preconditioner in Navier-Stokes simulations
! Apply to realistic fluid simulations
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